Adversarially Robust Deepfake Detection via Adversarial Feature Similarity Learning
Authors: Sarwar Khan
Published: 2024-02-06 11:35:05+00:00
AI Summary
This paper proposes Adversarial Feature Similarity Learning (AFSL) for robust deepfake detection. AFSL integrates three deep feature learning paradigms to distinguish real and fake videos, even under adversarial attacks, by optimizing feature similarity and dissimilarity between real and fake samples and their perturbed counterparts.
Abstract
Deepfake technology has raised concerns about the authenticity of digital content, necessitating the development of effective detection methods. However, the widespread availability of deepfakes has given rise to a new challenge in the form of adversarial attacks. Adversaries can manipulate deepfake videos with small, imperceptible perturbations that can deceive the detection models into producing incorrect outputs. To tackle this critical issue, we introduce Adversarial Feature Similarity Learning (AFSL), which integrates three fundamental deep feature learning paradigms. By optimizing the similarity between samples and weight vectors, our approach aims to distinguish between real and fake instances. Additionally, we aim to maximize the similarity between both adversarially perturbed examples and unperturbed examples, regardless of their real or fake nature. Moreover, we introduce a regularization technique that maximizes the dissimilarity between real and fake samples, ensuring a clear separation between these two categories. With extensive experiments on popular deepfake datasets, including FaceForensics++, FaceShifter, and DeeperForensics, the proposed method outperforms other standard adversarial training-based defense methods significantly. This further demonstrates the effectiveness of our approach to protecting deepfake detectors from adversarial attacks.