Examining the Implications of Deepfakes for Election Integrity
Authors: Hriday Ranka, Mokshit Surana, Neel Kothari, Veer Pariawala, Pratyay Banerjee, Aditya Surve, Sainath Reddy Sankepally, Raghav Jain, Jhagrut Lalwani, Swapneel Mehta
Published: 2024-06-20 13:15:54+00:00
AI Summary
This research paper examines the threats of deepfakes to election integrity, evaluating the efficacy of existing detection methods. It provides an accessible summary for lawmakers and civil society actors to understand the technology and its implications for existing policies.
Abstract
It is becoming cheaper to launch disinformation operations at scale using AI-generated content, in particular 'deepfake' technology. We have observed instances of deepfakes in political campaigns, where generated content is employed to both bolster the credibility of certain narratives (reinforcing outcomes) and manipulate public perception to the detriment of targeted candidates or causes (adversarial outcomes). We discuss the threats from deepfakes in politics, highlight model specifications underlying different types of deepfake generation methods, and contribute an accessible evaluation of the efficacy of existing detection methods. We provide this as a summary for lawmakers and civil society actors to understand how the technology may be applied in light of existing policies regulating its use. We highlight the limitations of existing detection mechanisms and discuss the areas where policies and regulations are required to address the challenges of deepfakes.